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y Pro|09“e: the beauTy of charm

» Its discovery provided an important validation of
the Standard Model.

+ Its mass scale makes it an ideal laboratory to
probe QCD in the non-perturbative domain.

+ The study of its decays probes the CKM sector of
the Standard Model

* Directly (V., V.4)

* Indirectly, improving our knowledge of the
hadronic matrix elements affecting B decays

* Charm decays provide a unique window onh new
physics affecting the u-quark-type dynamics.
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Quark Mixing

SR .‘-

- Weak interaction couples weak eigenstates, not mass
eigenstates: CKM matrix relates these two

El’ Vud Vus Vub t:l 1—%/12 A Aﬂ{p—in(l—%ﬁz)]
S Y= Vc:cl Vcs Vu:b s -y 1—%/12 —inA*A* AN (1 + in/zz)
F AV (1-p—i —AA? 1
b Via Vi Vg b (=pmin)
weak Verm mass Wolfenstein
cigenstates cigenstates parameterization

To A3 in real part & A% in im. part
CKM unitary — described by 4 parameters (3 real, 1
Imaginary: €.g. A,A,p,n)
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Experimental methods

=DD production at threshold:
used by Mark ITT, and more
recently by CLEO-c and BES-IT.

=Unique event properties e
»Only DD not DDx produced
=Large cross sections:
o(D°D°) = 3.72+0.09 nb | %
o(D*'D)= 2.82+0.09 nb } =
» Ease of & measurements
using "double tags"
"B-factories (e*e”) + fixed target
& collider experiments at hadron

: K
machines (n,) //\
=D displaced vertex e* \4’ d e

Continuum ~14.5 nb T

D" — "D tag
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Theoretical Tools

In order to extract fundamental Standard Model parameters
we need to relate the world of hadrons to the world of quarks.
The theoretical tools available are:

Lattice QCD: Theory (unquenched), still has moderate
systematic errors; however theoretical accuracy can be
improved in a controlled fashion.

QCD Sum Rules:

Relationship between phenomenological and theoretical spectral
functions;
Theoretical spectral functions are calculated from two or three-

point correlators in perturbative QCD, including corrections from
the OPE
Many parameters, difficult to improve their accuracy in a systematic

fashion.

Phenomenological models
Important contributions to our understanding of charm decays; no way to
improve these predictions in any systematic way
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Predictive lattice QCD

. The foundations: ., [T T
unquenched lattice € - S T
QCD demonstrated & - R IO o -
that it can R N L RS . SR
reproduce several L - ke Pl ber o
"golden properties” = | el s b o -

* Predictive lattice < - 2 ] S S
QCD - u ﬁH Jveras) | I—IL-—| .

. fD o _ i e Y3818 | EI—-—! .
- Semileptonic D é - yaes) 4
decay form SR A ST RO
factors q u-.:[I:E Iwa;l.-'!f[.}\ pe ri]l"rllcnl (n, 2 '(J2+ I )|L”\ pe |'= i‘Lmnl
- M(B)) Update: Q- waPR¥58¢4
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Leptonic Decays: D* — ¢*v

c and d can annihilate
probability is «c to wave function overlap

<

2
|
F® _)€+V)__G1% DmEMD( - ] |V;d|
MD

d—s V_, — V., same process in the D_ system (f;)
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The importance of measuring
the decay constants f- and fp.

+ We can compare theoretical calculations of
fp to experimental data and gain

confidence in theory's ability to predict fp

- fp is necessary to translate of B°-B° mixing
data into |Viy4| thus constraining p—

- fp+ /fp:checks calculations of f/fg
* Measurement of f & semileptonic form
factors provide a check on theory
independent of V_4and V_, 2
1 a’l“(D+ — 72'81/) Ik f+(q2)‘
2 24 2
[(D"—(v) dq 1
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CLEO-c
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# of tags = 158,354+496, includes charge-conjugate modes
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fy* measurement technique

» CLEO-c uses a sample tagged by D* hadronic decays (281
pb-!to search for D*—m*v?

» Use neutrino MM? observable to discriminate between
signal and background:

Wz :(Ebeam _Ey)z _(_})D_ _Bl)z

» Signal peaks at MM?= 0

> Additional cuts to suppress background:
» No additional charged tracks from event vertex
» Largest unmatched shower energy less than 0.25 GeV, to suppress n*n°

> Muon candidate consistent with minimum ionizing particle (E_< 300 MeV
in EM cal) Systematic
> Systematic errors are all determined using DA TA} errors are small

» Detailed background studies based on MC+ DATA | and well

understood
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Deriving a Value for f-

Backgrounds
Mode B(%) # Events
n*n0 0.13+0.02 1.40+0.18+0.22
KOr* 2.77+0.18 0.33+0.19+0.02
T (TDTH) 2 65*B(D> ) 1.08+0.15+0.16
Other D*, D° <0.4,<0.4 @ 90% c.l.
Continuum <1.2 @ 90% c.l.
Total 2.8140.307%

. @(D+ N “Jrv) :(4-4O:|ZO.66+0'09 )X10_4 Efficiencies: u* detection

-0.12 (69.4%); extra shower
(96.1%); correction for

. fD* :(222 6£1 672243 ) MeV easier tag reconstruction in

u'v events (1.5%)
- 3(D* - e*'v)<2.4x10° @ 90% c.l.,
rules out some non-Standard model theories
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Comparison with Theory

EXPERIMENT
* CLEO-cnew ____—c ko —— 222.6+16.7 55 MeV
measurement | N
P BES | 5 —
- BES measurement - et — i = - — — —
based on E

201+£3+16 MeV +——+— Lattice QCD (FNAL & MILC)
267i174 events L= —h—e——l attice QCD Exact Chiral Sym.

« New Fer'milab- / .—.—.—.-;-. Quenched Lattice QCD (UKQCD)

MILC I"ZSUH’ H-—o——r- Quenched Lattice QCD
|

. CUI"I"ZHT LGTTiCQ '—‘—': QCD Spectral Sum Rules
meas”remen_r —— QCD Sum Rules
(un uenched light : : o 1 Relativistic Quark Model
f| q . 9 : ¢ Potential Model
COanVSOI';i)e;\i at 370/ : . Isospin Mass Splittings

o

cl with CLEO-c 100 200 300 400

result $|\/|ev)
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Semileptonic Decays: D —» X/(*v

| 2 2 2 2

¢ Inprinciple, the best way to ¢ =(P5 = Pllaun) =+ m}, ~2E,m,
determine several magnitudes
of CKM elements, is to use
semileptonic decays. Decay

rate a|V,|*
¢ This1s how V and V have
been determined

: Strong
¢ Measure: N ' interaction
dF(D — Xev) B G; P effects
dq’ 247
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Goals in Semileptonic Decays

» Assuming V_ and V_4 known:
- D>K(K*)¢v determine form factor shapes &
distinguish among models + test lattice QCD

predictions
- Don—tv

» Lattice checks comparing semileptonic ff & fy

* Assuming lattice predictions OK:

- measurements of V4 & V. (+ V, would provide an
important unitarity check)

- V,, use D—plv to get form-factor for B—plv, at
same v-v point using HQET (& név)

Ligeti-Wise PRD53,4947(1996)
Grinstein-Pirjol PLB533,8(2002)
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Recent data from )
CLEO-c and BES-II, -
use the kinematic -

variable
U = EmiSS u ‘pmiss

to select a specific
semileptonic channel

Exclusive semileptonic decays

from y(3770) data
CLEO-c (57 pb'!)

D—»K*n
D—» K,
D™— K*n n°
D> K " n°
D> K, nr*

-D°—>K-n*
-D°—> K- n*n®
-DO—> K- n* - w*
-D°— K, nn*n®
-D°—> K- n*non®
-D%— K, n°
-D°—>K-K*

BES-II (33 pb!)
D—K*mt 1"
DK,
D—K+*m” 7 1t°
D—» K, n
D— K'K'n,
D>K*n*nn n”
Do— K K~

D°— K*n*nn m
Do— K, n* 7

D°— K* 1t~ nt°

g

—

Tagging modes
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Cabibbo Suppressed Semileptonic Decays
CLEO-c

D’ —pev 15t Observations.
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Exclusive branching fractions

First measurements by CLEO-c

Decay Mode | B(%) (CLEO-c) |B(%) (BES-II) | B(%) (my ave
including others)

Do—K-e*v, 3.44+0.10£0.10 3.82+0.40+0.27 3.54+0.11
Do—mety, 0.262+0.025+0.008 | 0.33+0.13+0.03 | 0.285+0.018
Do—K*e*v, 2.16+0.15+0.08 2.14£0.16
Do—spe*v, 0.194+0.039+0.013

D*—Koe*v, 8.71+0.38+0.37 8.31+0.44
D*—noetv, 0.44+0.06+0.03 0.43+0.06
D*—>K*oetv, 5.56+0.27+0.23 5.61+0.32
D*—>poe*v, 0.21+0.04+0.01 0.22+0.04

0.16"797+0.01

D*—>woe*v,

—0.01™
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Inclusive semileptonic branching
fractions (preliminary - CLEO-c)

B(D* — Xev)=(16.19+0.20+0.36)%

281 pb!
" Y B(D" > Xev),,, =(15.1£0.50£0.5)%
(
A #mﬁ* o p° B(D’ = Xev)=(6.45+0.17+0.15)%
T | T4 s 3 B(D" - Xev),, = (6.1+0.2%0.2)%
P
& 0 ; ﬁ Are the charged and neutral semileptonic
"é %I #l widghs equal? Cleo-c incl
s | * F(D+ ~a Xe+‘/e) = 1.01+0.03(stat)  0.03(sys)
[~ 01} _-Iﬁ— F(D — Xe Ve)
| . [(D° - K e'v.) Cleo-c excl
; Ty Y ¢~ =1.00%0.05(stat) = 0.04(sys)
T R R R —>
%2 0.4 0.6 0.8 = 1 . _e+ve BES-TI
Momentum (GeV) TD oK ev) jggy 0.22(stat) +0.07(sys)

(D" — K’y
Lab momentum spectrum —
no FSR correction
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Lattice comparison -
the shape of f (q?)

Modern parameterization of the form factors proposed by
Becirevic & Kaidalov (BK): 1 1

S (x)=7"(0)

—qz/mlzf _l—aqz/m;*

) )
i = 5

max I N \ y
II|IIII|IIII|IIIIIIII|IIIIIIIIIIII|II'II w

DO K&V _ Repre.sen.ting

- contributions beyond
] the lowest lying

] resonances (D*)

T (g V(o)

FOCUS DATA H | Fajfer and Kamenik shows

that including the next

—— Lattice QCD/ Fermilab radial excitation in ff gives

MILC( 1o0/20 stat.err. only) good fij's To meqsured
[ branching fractions.
pboo o 1o v v B e b B Byl

0 005 01 015 02 025 03 035 04 045 Fajfer et al. hep-ph/0506051 and

g I s 0412140

]| Comprehensive analysis by
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form factor shapes:
what we know

a(D°—Kdv)
Lattice (Fermilab-MILC hep- 0.50+0.04(stat)
ph/0408306)
FOCUS 0.28 £0.08 +0.07
CLEO III 0.36 +0.10°
Belle 0.40 +0.12 +0.19

a(D°—név)

Lattice (Fermilab-MILC hep-
ph/0408306)

0.44 +0.04(stat)

CLEO III 0.37 720 +0.15
Belle 0.03 £0.27+0.13

Marina Artuso, PANIC 2005, Santa Fe, October 26, 2005
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K'n* mostly K* with some
s-wave (15t seen by FOCUS)
For D—V e*v, use 3 helicity
amplitudes H,(q%), H.(q?),

& H.(q°)
* Add h,(q%)-H,(q?) 1o wof T :
account for s-wave term % | Use 2447
= | t -
. Use 281 pb-t SRR
UE w
0.6 0.8 1.0 1.2 1.4

2
Marina Artuso, PANIC 2005, Santa Fe, O M(Km) GeV/c



Form Factor Results (non-parametric
analysis; CLEO-c)

0.0020 0.006 ; s ° S|9n|f|CGnT
0.0015 | ! h"_\‘(\‘\]\ sS-wave
: 0.004 |- ; S .
0.0010} - % : ampllfUde
5_00055 1 0.002 _ H-(q2) — COr\fir‘med
0.0000 f oo b v b v b by f 0.000 : v b b e by by : * H+'_'O he' iCiTy
00 02 04 06 08 10 00 02 04 08 08 1.0 .
amplitudes
GO4FE T T T T T T
5 | h, models s-
0oal 0.04
; wave
D.{:-z;— 0.02 COmponenT
001 [ ool — I+ No evidence
D.'D'D:””|”|||||”|””|”” '””|”||||”||””|””: for'dor'f
00 02 04 08 08 10 0.0 02 04 08 08 1.0

qE (GEVZ) wave
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Form factor normalization
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Lattice comparison: fyand
semileptonic form factors

+ We can use a quantity independent of V4 to
do a CKM independent lattice check:

p o= LD Duv) - fp
“ANT(D > xlv)  f7(0)

CTobtain: Ko =0.212+0.028
R =0.249+0.022

* Theory and data consistent at 28% C.L.
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The CKM Matrix

* Multifaceted unitarity checks
» Charm decays contribute:

- With precision measurements of V., and V4
assuming that shape and normalization of the form

factors are OK:

=0.957 £0.017(exp) +0.093(t

LEP W data 0.976+0.014, assuming unitarity hep-ex/0412015

1)

=0.213 +£0.008(exp) +0.021(t

A rough unitarity check on on the second row:

1-(V,+V.+V;)=0.037+0.

Marina Artuso, PANIC 2005, Santa Fe, October 26, 2005
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v,v charm production off valence d quark 0.224+0.012 (PDG04 ave)

1381
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Charm as a probe of new physics

» Unique opportunities in three areas of
investigation:
- Mixing
- CP violation
- Rare decays

» Smoking gun or long distance effect?

- Although all three phenomena suppressed in
Standard Model, enhancement due to long
distance effects may mimic new physics.
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. Mixing could proceed via

C U g

>

0 ™o X
D D .
=

e presence of d-type qugrks in &

the loop makes the SM =
expectations for D°- D° mixing 2
small compared with systems Z

involving u-type quarks in the box
diagram because these loops include
1 dominant su uper- heavy quark (t): K°
(50%), B°(20%) & B, (50°/o)

New physics in Ioops implies x
=AM/T">> vy =Al" /2T"; but long range
effects complicate predictions

10,

-10

Case study I: mixing

D -DMMixi ng Predlctlons

bed 1 &
OPL 0N ‘: -4 Q
d 110
TA q | Q)
® | D
-7/
AN N .A ‘/\ :10 E
Al I, [T >
1 -10
+AA4~A4~AT A 110 é
S
110 5,
1 -16
-_10
SM|X| 1(.)19
A
) |RQ]\/P]\Y‘|

0

~20 40
Reference | ndex
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D° D° mixing: the data

" The study of D° wrong-sign Kr yields has been a key

step in our experimental study of D° D° mixing.

- Caveats:

- Complicated by interference between DCSD & mixing [strong

phase & = data constrain only x' & y']

- Complicated by CP violation

Experiment x2(95 % C.L) Y'(95% C.L.)
(X10-3) (X10-3)
Belle (2004) 0.89 -30< Y«27
BaBar (2003) 2.2 -b6< Y'<39
FOCUS (2001) 152 -124< Y'<-5
CLEO (2000) 0.82 -58< Y«10

y

1J [e10Ud3 ISON

Marina Artuso, PANIC 2005, Santa Fe, October 26, 2005
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D° D° mixing: the data IT

-D° semileptonic decays:
Rys = 2(x2+y?) [no

R

- EEMccsor ke awrage AT | gtpong phase §]

g Experiment RM(95°/° CcL) \/X2+y2
_F BaBar 04 |0.0046 |0.1
sor Belle 05 |0.0016 | 0.056
5[ CLEO 05 |0.0091 |0.135
_105_ ‘Dalitz plot analysis of

- - DO— K n*n- (CLEO IL.V)

L L e d comparable sensitivity

X (%)
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CP/T Violation

« Unexpectedly large CP violation asymmetries may be
a better signature for new physics (0.01-0.001)

e CP violation can be studied 1n a variety of ways:
— Direct CP violation
— CP violation 1n mixing

— T violation in 4-body decays of DY/D* (assuming
CPT) and studying triple product correlations

— Exploiting quantum coherence of DD produced in
y(3770) decays

Marina Artuso, PANIC 2005, Santa Fe, October 26, 2005
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CP/T Violation: a sampler of
recent data

Experiment |Decay mode A (%) | Notes

BaBar D*—>KK*r* 14+1.0 +0.8

BaBar D*— ¢*n* 0.2+1.5+0.6 Res. Substr.

BaBar D*— K0 K~ 09+17+07 |°F
D*—>KK'n

0 + - —0 Dalitz plot analysis
CLEO ILV D »n* 1+9i8 constraints also
-7 TTTS-wave

component

FOCUS DO 5K*Kn*n~ |1.0 £5.7+3.7 | T violation
through triple

FOCUS D* >k K |23 +6.242.2 | product
correlations

FOCUS Ds »K Kt |-3.6 +6.7+2.3

Marina Artuso, PANIC 2005, Santa Fe, October 26, 2005



Epilogue: charm as a facet of
beauty

* Charm improves b decay studies in several
ways:
- D absolute branching fractions = B absolute
branching fractions

- Dalitz plot analyses — determination of the angle
b

Marina Artuso, PANIC 2005, Santa Fe, October 26, 2005
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D absolute branching fractions

B(D*—K ntn?) B(D°—>K'1")
o s o CCleohowroge W POG
CLEO-c corrected for i;iz:g(;) :””
rer final state radiation (fSr), | scus@®  rrens
Mark others not ALEPHOT  i—efi
HRS -
Magk] Mark Il = ey
BES Il Mark Il —_
Mark | &
CLEO—c BES Il H—-—H
T Three best measurements CLEO-c o
B (%) Error(%) | Source B (%) Error(%) | Source
9.3+0.6+0.8 10.8 CLEO II 3.82+0.07+0.12 3.6 CLEO II
9.1+1.3+0.4 14.9 MK IIT 3.90+0.09+0.12 3.8 ALEPH
9.52 +0.25+0.27 3.9 CLEO-c 3.91+0.08 +0.09 3.1 CLEO-c
My averages: (9.51£0.34)% (3.92+0.08)%, both corrected for fsr

Marina Artuso, PANIC 2005, Santa Fe, October 26, 2005
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Dalitz plot studies

* Large fraction of the known

D meson decay rate proceeds
through 3 body hadronic
decays involving © and K.

-+ These decays are dominated
by quasi-2 body final states
with a rich set of resonance.

* Their strength and
interference patterns useful
to understand light hadron
spectroscopy.

R B \\ N T

1 1.2 14 16 138
m*(K* K7) GeV*/c*

Marina Artuso, PANIC 2005, Santa Fe, October 26, 2005
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Charm factories at threshold
contribution

» Input Yo determination of

CLEO-C  ptar 0 - ko CKM phase y from B—D[K r*n]K
ﬁ;‘* ______ [ ENTRIES 10755 - Recent results from BaBar and
4 Belle:

E

¢, =(777)] £13+11) deg
7 =(70£26+10+10)deg

Third error 1s model dependence of
1, Dalitz plot fit: may be reduced by
I T simultaneous fit to generic K. and

2 '2 3 CP tagged (CP even and odd) Dalitz
m*(Ks) plots.

Marina Artuso, PANIC 2005, Santa Fe, October 26, 2005 36



Conclusions I

* Precision studies of charm and beauty decays
are a crucial complement to energy frontier
experiments tfo develop a more complete
understanding of fundamental particles and
their interactions (new physics):

- The synergistic efforts of theorists and
experimentalist will lead to a better understanding
of QCD in the non-perturbative regime

—Precision tests of the Standard Model

—New tools applicable to other theoretical particle physics
problems.

Marina Artuso, PANIC 2005, Santa Fe, October 26, 2005
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Conclusions IT

- Large data samples at center-of-mass energies
near DD (and D.D,) threshold are providing unique
constraints to the Standard Model and may
uncover unique signatures of new physics.

- The study of charm and beauty decays at e*e- &
hadron collider b-factories represent another
facet of this rich program

is a key element of the
next generation of high
energy physics
experiments.

The study of

charm be

Marina Artuso, PANIC 2005, Santa Fe, October 26, 2005 38
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